Optimizing Statistical Character Recognition Using Evolutionary Strategies to Recognize Aircraft Tail Numbers
نویسندگان
چکیده
The design of statistical classification systems for Optical Character Recognition (OCR) is a cumbersome task. This paper proposes a method using Evolutionary Strategies (ES) to evolve and upgrade the set of parameters in an OCR system. This OCR is applied to identify the tail number of aircrafts moving on the airport. The proposed approach is discussed and some results are obtained using a benchmark data set. This research demonstrates the successful application of ES to a difficult, noisy, real-world problem.
منابع مشابه
Aircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کاملCharacter Recognition Using Neural Network
In the present paper, we are use the neural network to recognize the character. In this paper it is developed 0ff-line strategies for the isolated handwritten English character (A TO Z) and (0 to 9) .This method improves the character recognition method. Preprocessing of the Character is used binarization, thresolding and segmentation method .The proposed method is based on the use of feed forw...
متن کاملIn-Trim Flight Investigations of a Conceptual Fluidic Thrust-Vectored Unmanned Tail-Sitter Aircraft
The feasibility of using a stand alone Fluidic Thrust-Vectoring (FTV) system for the purpose of longitudinal trim of an unmanned aerial vehicle is the focus of the research presented in this paper. Since the fluidic thrust vectoring requires high pressure secondary air to deflect the engine exhaust gases, this research also provides an analytical toolset for preliminary sizing of a suitable sec...
متن کاملHybrid of Rough Neural Networks for Arabic/Farsi Handwriting Recognition
Handwritten character recognition is one of the focused areas of research in the field of Pattern Recognition. In this paper, a hybrid model of rough neural network has been developed for recognizing isolated Arabic/Farsi digital characters. It solves the neural network problems; proneness to overfitting, and the empirical nature of model development using rough sets and the dissimilarity analy...
متن کاملHandwritten Javanese Character Recognition Using Several Artificial Neural Network Methods
Javanese characters are traditional characters that are used to write the Javanese language. The Javanese language is a language used by many people on the island of Java, Indonesia. The use of Javanese characters is diminishing more and more because of the difficulty of studying the Javanese characters themselves. The Javanese character set consists of basic characters, numbers, complementary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004